Meditation and neurofeedback

Abstract

Dating back as far as 1957, the academic investigation of meditation and the Asian contemplative traditions have fascinated not only the likes of philosophers and religious scholars, but researchers in the fields of neuroscience, psychology, and medicine. While most of the contemplative traditions are comprised of spiritual practices that aim to bring the practitioner closer to self-actualization and enlightenment, from a neuroscientific and clinical perspective, meditation is usually considered a set of diverse and specific methods of distinct attentional engagement (Cahn and Polich, 2009). Over the last decade, we have witnessed an exponential increase in the interest in meditation research. While this is in part due to improvements in neuroimaging methods, it is also due to the variety of medical practices incorporating meditation into therapeutic protocols. With the general aim of understanding how meditation affects the mind, brain, body and general health, particularly interesting findings in recent research suggest that the mental activity involved in meditation practices may induce brain plasticity (Lutz et al., 2004). With its increasing popularity, many people in Western societies express an interest and motivation to meditate. However, for many it can often be quite difficult to maintain a disciplined and/or regular practice, for various reasons, ranging from a lack of time to general laziness. It is possible that machine assisted programs such as neurofeedback may help individuals develop their meditation practice more rapidly. Methods such as neurofeedback incorporate realtime feedback of electro-encephalography (EEG) activity to teach self-regulation, and may be potentially used as an aid for meditation. While Neurofeedback and Biofeedback have been used since the 1960’s, previous neuroscientific and clinical research investigating its efficacy has been limited, lacking controlled studies and significant findings (Moriyama et al., 2012). However, a recent overview of the existing body of literature on neurofeedback research has now led the American Academy of Pediatrics to recognize Neurofeedback, as well as working memory training, as one of the most clinically efficacious treatments for children and adolescents with attention and hyperactivity disorders (ADHD) (Dename, 2013). Neurofeedback has been used to treat a wide variety of other disorders such as insomnia, anxiety, depression, epilepsy, brain damage from stroke, addiction, autism, Tourette’s syndrome, and more (Tan et al., 2009; Coben et al., 2010; Cortoos et al., 2010; Messerotti Benvenuti et al., 2011; Mihara et al., 2013). As with all therapeutic interventions it is important to note that individuals who are seeking neurofeedback for diagnostics or for clinical and medical purposes seek qualified and licensed practitioners, as adverse effects of inappropriate training have been documented (Hammond and Kirk, 2008). Interestingly, many of the conditions that benefit from Neurofeedback treatment are consistent with the conditions that improve with regular meditation practice. For example, both ADHD patients and individuals diagnosed with depression benefit from meditation training (Hofmann et al., 2010; Grant et al., 2013) as well as neurofeedback training protocols (Arns et al., 2009; Peeters et al., 2013). In addition, both meditation and neurofeedback are methods of training mental states. Thus, it is plausible that the mental training involved in meditation may be fundamentally no different than other types of training and skill acquisition that can induce plastic changes in the brain (Lazar et al., 2005; Pagnoni and Cekic, 2007). One hypothesis to explain the similarity between meditation and neurofeedback is that both techniques facilitate and improve concentration and emotion regulation, for which both attentional control and cognitive control are necessary. When one aims to alter attentional control, one must learn to manipulate the amount of attention that is naturally allocated to processing emotional stimuli. Similarly, when an individual is attempting to exercise or gain some form of cognitive control they must alter their expectations and judgments regarding emotional stimuli (Braboszcz et al., 2010; Josipovic, 2010). These core principles are central to both meditation and neurofeedback, with the distinguishing feature being that meditation is selfregulated, and neurofeedback is machine aided. It is worth noting that the alpha and theta frequency bands trained in most cognitive enhancement neurofeedback protocols (Zoefel et al., 2011) share many similarities with the EEG frequency bands that show the most significant change during the early stages of meditation practice (Braboszcz and Delorme, 2011; Cahn et al., 2013). The integration between meditation and neurofeedback has already happened in popular culture. Numerous neurofeedback companies already provide so-called

Topics

0 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)